With the progress of modern times, automobile technology has become integral to human society. At the same time, the need for energy has also grown. In parallel, the total amount of waste energy that is liberated from different parts of the automobile has also increased. In this ever-increasing energy demand pool, future energy shortages and environmental pollution are the primary concerns. A thermoelectric generator (TEG) is a promising technology that utilizes waste heat and converts it into useful electrical power, which can reduce fuel consumption to a significant extent. This paper comprehensively reviews automobile thermoelectric generators and their technological advancements. The review begins by classifying different waste heat technologies and discussing the superiority of TEGs over the other existing technologies. Then, we demonstrate the basic concept of and advancements in new high-performance TEG materials. Following that, improvements and associated challenges with various aspects, such as the heat exchanger design, including metal foam, extended body, intermediate fluid and heat pipe, leg geometry design, segmentation, and multi-staging, are discussed extensively. Finally, the present study highlights research guidelines for TEG design, research gaps, and future directions for innovative works in automobile TEG technologies.