Temperature sensors play important roles in wide-spreading human activities. The non-contact method of using temperature sensors offers significant advantages but faces challenges in detection precision. In this work, a double-layer asymmetric terahertz (THz) metamaterial combined with phase transition oxide was proposed to realize non-contact temperature sensor with high sensitivity. The metamaterial exhibited band-stop filtering effects in the simulated transmission spectra. Temperature changes induced a reversible phase transition in VO2, resulting in altered conductivity. The numerical results indicated that the S21 parameter increases from −44.33 dB to −4.78 dB at a frequency of 1.22 THz as the conductivity of the VO2 film increases from 10 to 5000 S/m, achieving a modulation depth of 89%. In addition, the 86 nm thick VO2 film underwent a phase transition in the temperature range of 54.93 °C to 66.93 °C, achieving a sensitivity of 1.82 dB/°C for temperature sensing. This work provided great insights into the development of metamaterials based on high-precision temperature measurement.