Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Pluronic F127 copolymer is used as the main component to design injectable gels for therapeutic applications. Xanthan gum is added as an excipient to improve gel properties under physiological conditions. A polyphenol bioactive compound, curcumin, is selected as therapeutic agent with beneficial effects on metabolism and many diseases. The encapsulation efficiency and stability of formulations are investigated in an aqueous environment and in acetic acid solutions. The interactions between the hydrophobic polyphenol and the polymer matrix are investigated through rheology, DLS, and FTIR spectroscopy. The viscoelasticity of gels, correlated with the network structure, is influenced by xanthan gum or acetic acid addition. FTIR analysis of curcumin incorporated into the gel provides the evidence for interaction of the phenyl rings of both keto‐enol and di‐keto tautomers with the polymeric matrix. The spherical curcumin‐encapsulated micelles provided antioxidant properties. The kinetics of curcumin release from the Pluronic F127‐based gels suggests anomalous transport phenomena controlled by diffusion through the network and hydrodynamic effects. Both gel and lyophilized form of micellar encapsulated curcumin composites exhibited good stability for long‐term storage under ambient conditions.
Pluronic F127 copolymer is used as the main component to design injectable gels for therapeutic applications. Xanthan gum is added as an excipient to improve gel properties under physiological conditions. A polyphenol bioactive compound, curcumin, is selected as therapeutic agent with beneficial effects on metabolism and many diseases. The encapsulation efficiency and stability of formulations are investigated in an aqueous environment and in acetic acid solutions. The interactions between the hydrophobic polyphenol and the polymer matrix are investigated through rheology, DLS, and FTIR spectroscopy. The viscoelasticity of gels, correlated with the network structure, is influenced by xanthan gum or acetic acid addition. FTIR analysis of curcumin incorporated into the gel provides the evidence for interaction of the phenyl rings of both keto‐enol and di‐keto tautomers with the polymeric matrix. The spherical curcumin‐encapsulated micelles provided antioxidant properties. The kinetics of curcumin release from the Pluronic F127‐based gels suggests anomalous transport phenomena controlled by diffusion through the network and hydrodynamic effects. Both gel and lyophilized form of micellar encapsulated curcumin composites exhibited good stability for long‐term storage under ambient conditions.
This research aimed to create self‐assembled nanogel particles using chitosan grafted with various types of Pluronic to encapsulate curcumin, a hydrophobic biological agent. The study explored the properties of CS–Pluronic nanogels using Pluronic types L61, P123, F127, and F68, each varying in hydrophilic–lipophilic balance (HLB) index. Findings indicated that the critical micelle concentration (CMC) of Pluronics and CS–Pluronic copolymers did not depend on the HLB values but were influenced by the structural characteristics of each Pluronic type. The efficiency of curcumin encapsulation within the nanogels correlated with the CMC values of the CS–Pluronic copolymers, where lower CMC values resulted in higher encapsulation efficiencies. The curcumin‐loaded nanogels were spherical, positively charged, and had an average diameter under 200 nm. Controlled, pH‐dependent release of curcumin was observed in vitro studies conducted at 37°C in PBS at pH levels of 7.4 and 5.0, with a faster release in acidic conditions. Biocompatibility testing indicated that nanogel biocompatibility was influenced by the HLB value of Pluronic, with lower HLB values associated with reduced biocompatibility. Cytotoxicity testing revealed that curcumin‐loaded nanogels had increased cytotoxicity on MCF‐7 cells compared to free curcumin. CS–P123 emerged as the most effective carrier, meeting biocompatibility and stability requirements during storage.Highlights CS–Pluronic serves as an effective hydrophobic drug delivery system. The capacity of CS–Pluronic to encapsulate hydrophobic drugs is determined by its CMC value rather than its HLB index. CS–Pluronic is a copolymer known for its excellent biocompatibility. CS–Pluronic increases the toxicity of curcumin in nanogels compared to free curcumin.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long‐term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment‐responsive therapeutic release at the RA site. Microenvironment‐responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment‐responsive NDDSs for RA treatment, including pH‐, ROS‐, MMP‐, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.