This paper presents the design, fabrication, and characterization of a high-performance heterogeneous silicon on insulator (SOI)/thin film lithium niobate (TFLN) electro-optical modulator based on wafer-scale direct bonding followed by ion-cut technology. The SOI wafer has been processed by an 8 inch standard fabrication line and cut into 6 inch for direct bonding with TFLN. The hybrid SOI/LN electro-optical modulator operated at the wavelength of 1.55 μm is composed of couplers on the Si layer and a Mach–Zehnder interferometer (MZI) structure on the LN layer. The fabricated device exhibits a stable value of the product of half-wave voltage and length (V
π
L) of around 2.9 V·cm. It shows a good low-frequency electro-optic response flatness and supports 96 Gbit/s data transmission for the NRZ format and 192 Gbit/s data transmission for the PAM-4 format.