In this work, a finite element-based model is presented that simulates elastohydrodynamic lubrication in coated finite line contacts. Using this model, the film thickness and pressure distributions, between a straight roller with rounded edges on a plate, were analyzed. The model was successfully validated against representative results reported in literature. Parameter studies were conducted to study the influence of varying operating conditions, axial surface profile parameters and coating mechanical properties on the overall elastohydrodynamic lubrication behavior of the contact. It was found that in contrast with typical elastohydrodynamic lubrication behavior, the maximum pressure and minimum film thickness, which are located at the rear of the contact, are largely influenced by variations in load. Results also reveal that axial surface profile parameters and coating mechanical properties may act as amplifiers to the effect of load on pressure and film thickness distribution and can thus, if smartly chosen, significantly enhance lubrication performance.