The study of light beams propagating in the nonlinear, dispersive, birefringent and nonlocal medium of nematic liquid crystals has attracted widespread interest in the last twenty years or so. We review hereby the underlying physics, theoretical modelling and numerical approximations for nonlinear beam propagation in planar cells filled with nematic liquid crystals, including bright and dark solitary waves, as well as optical vortices. The pertinent governing equations consist of a nonlinear Schrödinger-type equation for the light beam and an elliptic equation for the medium response. Since the nonlinear and coupled nature of this system presents difficulties in terms of finding exact solutions, we outline the various approaches used to resolve them, pinpointing the good agreement obtained with numerical solutions and experimental results. Measurement and material details complement the theoretical narration to underline the power of the modelling.