An innovative, previously unexplored approach that leverages elastomeric membranes (EM) to develop a highly deformable cavity optomechanical resonator is proposed. This resonator generates multi soliton frequency combs (FCs) with low power consumption, a phenomenon of great interest in the realm of nonlinear light‐matter interactions. This approach marks a breakthrough due to its streamlined simplicity, utilizing a single continuous‐wave (CW) laser pump and an external acoustic wave. Matching the acoustic wave frequency with natural frequencies of the EM resonator accompanied by mechanical Kerr nonlinearities and dispersion give rise to the formation of mechanical FCs. The hyperelastic mechanical resonator and electromagnetic cavity resonance are parametrically coupled within the microwave frequency range, catalyzing the generation of mechanical FCs and their seamless transformation into optomechanical solitons within the optical domain with remarkable efficiency. Achieving stable pulse trains with a free spectral range ranging from 2 to 9 kHz using a few millimeter‐sized cavity by supplying 2 to 4 mW pump power marks a pivotal advancement in chip‐scale optomechanical resonators. This breakthrough holds transformative potential in domains such as quantum computing and spectroscopy. This method is fundamental to the creation of a mechanical Kerr medium, effectively bypassing the reliance on high mechanical quality‐factors.