The radiation effects and relaxation processes in solid N2 and N2-doped Ne matrices, preirradiated by an electron beam, have been studied in the temperature range of 5-40 and 5-15 K, respectively. The study was performed using luminescence methods: cathodoluminescence CL and developed by our group nonstationary luminescence NsL, as well as optical and current activation spectroscopy methods: spectrally resolved thermally stimulated luminescence TSL and exoelectron emission TSEE. An appreciable accumulation of N radicals, N(+), N2(+) ions, and trapped electrons is found in nitrogen-containing Ne matrices. Neutralization reactions were shown to dominate relaxation scenario in the low-temperature range, while at higher temperatures diffusion-controlled reactions of neutral species contribute. It was conceived that in α-phase of solid N2, the dimerization reaction (N2(+) + N2 → N4(+)) proceeds: "hole self-trapping". Tetranitrogen cation N4(+) manifests itself by the dissociative recombination reaction with electron: N4(+) + e(-) → N2*(a'(1)Σ(u)(-)) + N2 → N2 + N2 + hν. In line with this assumption, we observed a growth of the a'(1)Σ(u)(-) → X(1)Σ(g)(+) transition intensity with an exposure time in CL spectra and the emergence of this emission in the course of electron detrapping on sample heating in the TSL and NsL experiments.