2014
DOI: 10.1016/j.jaap.2014.07.004
|View full text |Cite
|
Sign up to set email alerts
|

Thermochemical and pore properties of goat-manure-derived biochars prepared from different pyrolysis temperatures

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
11
0
3

Year Published

2017
2017
2022
2022

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 39 publications
(15 citation statements)
references
References 27 publications
1
11
0
3
Order By: Relevance
“…An increase in the pyrolysis temperature from 300 to 700 ℃ resulted in a significant increase in the BET surface area, total pore volume, microporous surface area and microporous pore volume, the BET surface areas were 3.6, 17.3 and 82.9 m 2 g −1 at 300, 500 and 700 ℃, respectively. The findings were in close agreement with the previous studies regarding swine manure derived biochar [36] and goat manure derived biochar [50]. The BET surface area of swine manure derived biochar obtained at 500 ℃ was 3.9 m 2 g −1 , and obtained at 700 ℃ was 59 m 2 g −1 , the BET surface area of goat manure derived biochar obtained at 700 ℃ was 39.1 m 2 g −1 , and obtained at 800 ℃ was 93.5 m 2 g −1 .…”
Section: Bet Surface Area Of Yak Manure Derived Biocharsupporting
confidence: 93%
See 1 more Smart Citation
“…An increase in the pyrolysis temperature from 300 to 700 ℃ resulted in a significant increase in the BET surface area, total pore volume, microporous surface area and microporous pore volume, the BET surface areas were 3.6, 17.3 and 82.9 m 2 g −1 at 300, 500 and 700 ℃, respectively. The findings were in close agreement with the previous studies regarding swine manure derived biochar [36] and goat manure derived biochar [50]. The BET surface area of swine manure derived biochar obtained at 500 ℃ was 3.9 m 2 g −1 , and obtained at 700 ℃ was 59 m 2 g −1 , the BET surface area of goat manure derived biochar obtained at 700 ℃ was 39.1 m 2 g −1 , and obtained at 800 ℃ was 93.5 m 2 g −1 .…”
Section: Bet Surface Area Of Yak Manure Derived Biocharsupporting
confidence: 93%
“…Animal manure derived biochar has received tremendous attention in recent years because its higher levels of essential plant nutrients, and higher CEC (cation exchange capacity) than plant biomass derived biochar [3,31,32]. For example, swine/pig separated-solids, paved-feedlot manure, dairy manure, poultry litter, turkey litter, and chicken manure derived biochar [3,[32][33][34][35][36][37][38][39][40][41][42][43][44], cow manure derived biochar [44][45][46], cattle manure derived biochar [3,[47][48][49], and goat-manure derived biochar [50] have been investigated, concluding that it is possible to prepare biochar with different agronomic properties depending on the feedstock and pyrolysis conditions.…”
Section: Introductionmentioning
confidence: 99%
“…The effectiveness of contamination removal depends on the biochars specific surface area and cation exchange capacity (Ahmad et al 2014b;Kołodyńska et al 2012;Touray et al 2014), as well as on the kind of interfering ions (Bogusz et al 2015), pH of the solution, the dosage of biochar applied (Kılıç et al 2013;Tomczyk et al 2019), soil type, soil pH, contact time, metal concentration and temperature (Bradl 2004;Dube et al 2001;Srivastava et al 2005) as well as biochar type. Many studies have investigated heavy metal adsorption by biochars, including the adsorption of copper ions from water by a soil:biochar mixture at different pH values (Tomczyk et al 2019), adsorption of heavy metal ions on kaolin (Srivastava et al 2005), adsorption of zinc, copper and lead on zeolite (Perić et al 2004), adsorption of platinum (IV) ions in loess soil (Bojanowska and Jackowska 2005), and the adsorption of heavy metal ions on biochars (Kołodyńska et al 2012).…”
Section: Inorganic and Organic Contaminates In Soilmentioning
confidence: 99%
“…Además, dependiendo de la temperatura, tiempo y composición del material de partida, en la composición del biochar, la celulosa no ha sido degradada por completo, la lignina se ha descompuesto parcialmente y puede conservar un elevado numero de grupos hidroxilo y carboxilo en su estructura (Novotny et al, 2015). A medida que aumenta la temperatura, se produen cambios en las propiedades físicas y químicas del biochar, obteniendo materiales más estables y con un menor porcentaje en materia volátil (Cantrell, Hunt, Uchimiya, Novak, & Ro, 2012;Touray, Tsai, Chen, & Liu, 2014;Uchimiya et al, 2010). Generalmente, un aumento en la temperatura de pirólisis da lugar a biochares con menor capacidad de intercabio catiónico (CIC), mayor grado de aromaticidad, pH, área superficial, porosidad, contenido en cenizas y concentración de nutrientes (McBeath, Smernik, Schneider, Schmidt, & Plant, 2011;Gaskin, Steiner, Harris, Das, & Bibens, 2008;Novotny et al, 2015).…”
Section: Principales Tratamientos Térmicos Para La Preparación Del Biunclassified
“…Mészáros et al (2007) Salvo para el C y el O total, en este estudio se observa una ligera influencia del incremento de temperatura de pirolisis en la pérdida de H, N y S total en los biochares, especialmente a partir de los 600ºC. Estudios anteriores mostraron tendencias similares en la evolución del contenido en C y N total de los biochares (Chan et al, 2008;Singh et al, 2010;Cao & Harris, 2010) de residuos ganaderos pirolizados entre 300-500ºC, así como en el O y el H total (Enders, Hanley, Whitman, Joseph, & Lehmann, 2012;Touray et al, 2014) preparados entre 300-800ºC. Esto se debe principalmente a que durante la pirolisis de la biomasa, se producen volatilizaciones y reacciones complejas de polimerización/condensación .…”
Section: Propiedades Químicas De Los Residuos Ganaderos Y Biocharesunclassified