Conventional cooling systems consume a high percentage of the world’s total electricity generation. Because absorption cooling systems can be mainly operated with thermal energy, they can be used to reduce such percentage. In the present paper, an analysis is carried out to determine the cooling potential that can be obtained from a geothermal well in a location of Mexico by using a single-stage absorption cooling system. The analysis has been carried out taking into account the desired cooling temperature, the ambient temperature, and the temperatures at different depths of the wells for a typical day of every season of the year. The results showed that, for a fixed generation temperature, a maximum cooling potential as big as 71,594 GW, 70,649 GW, 71,164 GW, 70,859 GW could be obtained in Winter, Spring, Summer, and Autumn, respectively. Using the temperatures obtained from the well, for a fixed depth, the results show that higher values are obtained in spring and summer. From the analysis, it is clear that absorption systems operating with geothermal energy could be an excellent alternative to reduce the electricity consumed by conventional systems.