Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. Marine cold-air outbreaks (MCAOs) strongly affect the Arctic water cycle and, thus, climate through large-scale air mass transformations. The description of air mass transformations is still challenging, partly because previous observations do not resolve fine scales, particularly for the initial development of an MCAO, and due to a lack of information about the thermodynamical evolution starting over sea ice and continuing over open ocean and associated cloud microphysical properties. Therefore, we focus on the crucial initial development within the first 200 km over open water for two case studies in April 2022 during the HALO-(AC)3 campaign (named after the High Altitude and Long Range Research Aircraft and Transregional Collaborative Research Centre ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes and Feedback Mechanisms (AC)3). The two events, just 3 d apart, belong to a particularly long-lasting MCAO and occurred under relatively similar thermodynamic conditions. Even though both events were stronger than the climatological 75th percentile of that period, the first event was characterized by colder air masses from the central Arctic which led to an MCAO index twice as high compared to that of the second event. The evolution and structure were assessed by flight legs crossing the Fram Strait multiple times at the same location, sampling perpendicularly to the cloud streets. Airborne remote sensing and in situ measurements were used to build statistical descriptions of the boundary layer, dynamics, clouds, and precipitation. For this purpose, we established a novel approach based solely on radar reflectivity measurements to detect roll circulation that forms cloud streets. The two cases exhibit different properties of clouds, riming, and roll circulations, though the width of the roll circulation is similar. For the stronger event, cloud tops are higher; more liquid-topped clouds exist; the liquid water path, mean radar reflectivity, precipitation rate, and precipitation occurrence have increased; and riming is active. The variability in rime mass has the same horizontal scale as the roll circulation, implying the importance of roll circulation on cloud microphysics and precipitation. Boundary layer and cloud properties evolve with distance over open water, as seen by, e.g., cloud top height rising. In general, cloud streets form after traveling 15 km over open water. After 20 km, this formation enhances cloud cover to just below 100 %. After around 30 km, precipitation forms, though for the weaker event, the development of precipitation is shifted to larger distances. Within our analysis, we developed statistical descriptions of various parameters (i) within the roll circulation and (ii) as a function of distance over open water. These detailed cloud metrics are particularly well suited for the evaluation of cloud-resolving models close to the sea ice edge to evaluate their representation of dynamics and microphysics.
Abstract. Marine cold-air outbreaks (MCAOs) strongly affect the Arctic water cycle and, thus, climate through large-scale air mass transformations. The description of air mass transformations is still challenging, partly because previous observations do not resolve fine scales, particularly for the initial development of an MCAO, and due to a lack of information about the thermodynamical evolution starting over sea ice and continuing over open ocean and associated cloud microphysical properties. Therefore, we focus on the crucial initial development within the first 200 km over open water for two case studies in April 2022 during the HALO-(AC)3 campaign (named after the High Altitude and Long Range Research Aircraft and Transregional Collaborative Research Centre ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes and Feedback Mechanisms (AC)3). The two events, just 3 d apart, belong to a particularly long-lasting MCAO and occurred under relatively similar thermodynamic conditions. Even though both events were stronger than the climatological 75th percentile of that period, the first event was characterized by colder air masses from the central Arctic which led to an MCAO index twice as high compared to that of the second event. The evolution and structure were assessed by flight legs crossing the Fram Strait multiple times at the same location, sampling perpendicularly to the cloud streets. Airborne remote sensing and in situ measurements were used to build statistical descriptions of the boundary layer, dynamics, clouds, and precipitation. For this purpose, we established a novel approach based solely on radar reflectivity measurements to detect roll circulation that forms cloud streets. The two cases exhibit different properties of clouds, riming, and roll circulations, though the width of the roll circulation is similar. For the stronger event, cloud tops are higher; more liquid-topped clouds exist; the liquid water path, mean radar reflectivity, precipitation rate, and precipitation occurrence have increased; and riming is active. The variability in rime mass has the same horizontal scale as the roll circulation, implying the importance of roll circulation on cloud microphysics and precipitation. Boundary layer and cloud properties evolve with distance over open water, as seen by, e.g., cloud top height rising. In general, cloud streets form after traveling 15 km over open water. After 20 km, this formation enhances cloud cover to just below 100 %. After around 30 km, precipitation forms, though for the weaker event, the development of precipitation is shifted to larger distances. Within our analysis, we developed statistical descriptions of various parameters (i) within the roll circulation and (ii) as a function of distance over open water. These detailed cloud metrics are particularly well suited for the evaluation of cloud-resolving models close to the sea ice edge to evaluate their representation of dynamics and microphysics.
Abstract. Global warming is amplified in the Arctic. However, numerical models struggle to represent key processes that determine Arctic weather and climate. To collect data that help to constrain the models, the HALO–(𝒜𝒞)3 aircraft campaign was conducted over the Norwegian and Greenland seas, the Fram Strait, and the central Arctic Ocean in March and April 2022. The campaign focused on one specific challenge posed by the models, namely the reasonable representation of transformations of air masses during their meridional transport into and out of the Arctic via northward moist- and warm-air intrusions (WAIs) and southward marine cold-air outbreaks (CAOs). Observations were made over areas of open ocean, the marginal sea ice zone, and the central Arctic sea ice. Two low-flying and one long-range, high-altitude research aircraft were flown in colocated formation whenever possible. To follow the air mass transformations, a quasi-Lagrangian flight strategy using trajectory calculations was realized, enabling us to sample the same moving-air parcels twice along their trajectories. Seven distinct WAI and 12 CAO cases were probed. From the quasi-Lagrangian measurements, we have quantified the diabatic heating/cooling and moistening/drying of the transported air masses. During CAOs, maximum values of 3 K h−1 warming and 0.3 g kg−1 h−1 moistening were obtained below 1 km altitude. From the observations of WAIs, diabatic cooling rates of up to 0.4 K h−1 and a moisture loss of up to 0.1 g kg−1 h−1 from the ground to about 5.5 km altitude were derived. Furthermore, the development of cloud macrophysical (cloud-top height and horizontal cloud cover) and microphysical (liquid water path, precipitation, and ice index) properties along the southward pathways of the air masses were documented during CAOs, and the moisture budget during a specific WAI event was estimated. In addition, we discuss the statistical frequency of occurrence of the different thermodynamic phases of Arctic low-level clouds, the interaction of Arctic cirrus clouds with sea ice and water vapor, and the characteristics of microphysical and chemical properties of Arctic aerosol particles. Finally, we provide a proof of concept to measure mesoscale divergence and subsidence in the Arctic using data from dropsondes released during the flights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.