“…This inspired the development of new modeling frameworks that exploit the sets of additional thermodynamic and physicochemical 6 constraints and integrate available data coming from several levels to reduce the space of admissible parameter values (Chakrabarti et al, 2013;Jamshidi and Palsson, 2010;Miskovic and Hatzimanikatis, 2010;Miskovic and Hatzimanikatis, 2011;Soh et al, 2012;Tran et al, 2008;Wang et al, 2004;Wang and Hatzimanikatis, 2006a;Wang and Hatzimanikatis, 2006b). Some of these approaches use Monte Carlo sampling techniques to extract populations of parameter sets capable of reproducing the observed physiology (Birkenmeier et al, 2015a;Birkenmeier et al, 2015b;Chakrabarti et al, 2013;Miskovic and Hatzimanikatis, 2010;Murabito et al, 2014;Soh et al, 2012;Tran et al, 2008;Wang et al, 2004;Wang and Hatzimanikatis, 2006a;Wang and Hatzimanikatis, 2006b). However, the sheer size of the admissible space that spans through the spaces of kinetic parameters, metabolite concentrations and metabolic fluxes along with the intrinsic nonlinearities of enzyme kinetics require tailored formulations and efficient parameter estimation techniques that are scalable and that can ultimately provide a detailed description of the metabolism.…”