Recycling of metals from different waste streams must be increased in the near future for securing the availability of metals that are critical for high-tech applications, such as batteries for e-mobility. Black copper smelting is a flexible recycling route for many different types of scrap, including Waste Electrical and Electronic Equipment (WEEE) and some end-of-life energy storage materials. Fundamental thermodynamic data about the behavior of battery metals and the effect of slag additives is required for providing data necessary for process development, control, and optimization. The goal of our study is to investigate the suitability of black copper smelting process for recycling of battery metals lithium, cobalt, manganese, and lanthanum. The experiments were performed alumina crucibles at 1300 °C, in oxygen partial pressure range of 10−11–10−8 atm. The slags studied contained 0 to 6 wt% of MgO. Electron probe microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques were utilized for phase composition quantifications. The results reveal that most cobalt can be recovered into the copper alloy in extremely reducing process conditions, whereas lithium, manganese, and lanthanum deport predominantly in the slag at all investigated oxygen partial pressures.