To investigate the influence of heavy rare earth element yttrium on the type, morphology, and quantity distribution of inclusions in grain-oriented silicon steel, thermodynamic calculation was carried out on the typical rare earth inclusions in grain-oriented silicon steel containing yttrium. The main inclusions in the experimental steels with and without yttrium were observed and analyzed using field emission scanning electron microscope (FESEM, Zeiss Gemini SEM 300) and energy dispersive spectrometer (EDS, OXFORD Ultim Extreme). The electron backscatter diffraction (EBSD, OXFORD Symmetry) was used to analyze the local average misorientation of the hot-rolled plate. The results show that the inclusions in the Y-free steel are mainly long MnS, irregular Al2O3 and MnS-Al2O3. The inclusions in the Y-bearing steel are spherical rare earth compounds. The number of inclusions in Y-bearing steel decreases and the size increases compared with Y-free steel. The mean value of local average misorientation and the dislocation density of Y-bearing steel are smaller compared with Y-free steel, which could avoid the cracking problem caused by dislocation accumulation during hot rolling. After heating the rough-rolling sample to 1350 °C, there is no obvious difference in the inclusions type between the Y-free steel and Y-bearing steel. However, the area fraction of inclusions in Y bearing steel increases slightly. According to the thermodynamic calculation results, there are mainly three kinds of rare earth inclusions, YS, Y2S3 and Y2O2S, in Y-bearing steel, among which YS has the strongest stability and the stability of Y2O2S is the weakest. The rare earth element yttrium can effectively modify the inclusions, transforming the irregular Al2O3 inclusions, formed during the deoxidation of silicon steel into spherical rare earth inclusions, which suppress the precipitation of long MnS inclusions. Thus, the formability of the steel could be improved.