Concentrating solar thermal (CST) energy applications are growing worldwide, especially in combined cooling, heat, and power processes. Building upon the analysis of a building’s thermal comfort, and software simulations for CST, the current study evaluates a solar conditioning system integrated with absorption systems. The cooling system is equipped with single-, double- and triple-effect configurations cycle, production parameters, and thermal storage. The required fraction of auxiliary energy for the system operation is estimated. The results indicate that the double effect system is the best configuration for the adopted location in Brazil. The system’s annual auxiliary energy demand is, approximately, 20%. Triple-effect systems require less energy at higher temperatures due to local direct radiation, which then leads to an intermittent operation and greater auxiliary energy demands. The methodology applied in this work could be adopted in different locations, with an emphasis on the possibility of testing smaller scale systems in small buildings.