Dipines are a type of important antihypertensive drug as L-calcium channel blockers, whose core skeleton is the 1,4-dihydropyridine structure. Since the dihydropyridine ring is a key structural factor for biological activity, the thermodynamics of the aromatization dihydropyridine ring is a significant feature parameter for understanding the mechanism and pathways of dipine metabolism in vivo. Herein, 4-substituted-phenyl-2,6-dimethyl-3,5-diethyl-formate-1,4-dihydropyridines are refined as the structurally closest dipine models to investigate the thermodynamic potential of dipine oxidative metabolism. In this work, the thermodynamic cards of dipine models’ aromatization on 21 potential elementary steps in acetonitrile have been established. Based on the thermodynamic cards, the thermodynamic properties of dipine models and related intermediates acting as electrons, hydrides, hydrogen atoms, protons, and two hydrogen ions (atoms) donors are discussed. Moreover, the thermodynamic cards are applied to evaluate the redox properties, and judge or reveal the possible oxidative mechanism of dipine models.