Metal-organic frameworks (MOFs) constitute a class of three-dimensional porous materials that have shown applicability for carbon dioxide capture at low pressures, which is particularly advantageous in dealing with the well-known environmental problem related to the carbon dioxide emissions into the atmosphere. In this work, the effect of changing the metallic center in the inorganic counterpart of MIL-53 (X), where X = Fe 3+ , Al 3+ , and Cu 2+ , has been assessed over the ability of the porous material to adsorb carbon dioxide by means of first-principles theory. In general, the non-spin polarized computational method has led to adsorption energies in fair agreement with the experimental outcomes, where the carbon dioxide stabilizes at the pore center through long-range interactions via oxygen atoms with the axial hydroxyl groups in the inorganic counterpart. However, spin-polarization effects in connection with the Hubbard corrections, on Fe 3d and Cu 3d states, were needed to properly describe the metal orbital occupancy in the open-shell systems (Fe-and Cu-based MOFs). This methodology gave rise to a coherent high-spin configuration, with five unpaired electrons, for Fe atoms leading to a better agreement with the experimental results. Within the GGA+U level of theory, the binding energy for the Cu-based MOF is found to be E b = −35.85 kJ/mol, which is within the desirable values for gas capture applications. Moreover, it has been verified that the adsorption energetics is dominated by the gas-framework and internal weak interactions.