2019
DOI: 10.4028/www.scientific.net/kem.806.142
|View full text |Cite
|
Sign up to set email alerts
|

Thermodynamic Properties of Heisenberg Spin Systems

Abstract: We present the simulation results of magnetic 2D and 3D structures with direct (for both of them) and Dzyaloshinskii-Moriya (DMI) (for 2D lattice) interactions in the frame of the Heisenberg model. We have adapted the multipath Metropolis algorithm for systems with complex types of exchange interactions and rough energy landscapes. We show the temperature behavior of magnetization, energy, and heat capacity, and reveal its critical temperatures and order parameter.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…где ΔE -изменение энергии системы в результате смены конфигурации, T -абсолютная температура. В процессе семплирования для каждой принятой конфигурации системы вычисляются искомые характеристики, например намагниченность или теплоемкость [Kapitan et al, 2019].…”
Section: алгоритм метрополисаunclassified
“…где ΔE -изменение энергии системы в результате смены конфигурации, T -абсолютная температура. В процессе семплирования для каждой принятой конфигурации системы вычисляются искомые характеристики, например намагниченность или теплоемкость [Kapitan et al, 2019].…”
Section: алгоритм метрополисаunclassified
“…The Metropolis algorithm, as the Monte Carlo method, is a general method for highperformance calculations on supercomputers, for studying the thermodynamic properties of magnetic systems and dynamics in external magnetic fields. Our supercomputer software has been verified for Heisenberg model [18,19].…”
Section: Monte Carlo Calculationmentioning
confidence: 99%
“…A magnetic skyrmion is a topological object consisting of a skyrmion core, an outer domain, and a wall that separates the skyrmion core from the outer domain. The skyrmion size and wall width are two fundamental quantities of a skyrmion that depend primarily on material parameters, such as exchange energy, magnetic anisotropy, the Dzyaloshinskii-Moriya interaction, and magnetic field [1][2][3][4][5]. At the moment, theoretical and numerical studies are primarily being carried out, and experimental approaches to the construction of magnetic running memory based on skyrmions are being developed.…”
Section: Introductionmentioning
confidence: 99%