First-principles calculations of the stability, electronic, and magnetic properties of full-Heusler compounds V2FeSi and Fe2VSi in regular (L21) and inverse (XA) structures have been performed using density functional theory within an SCAN meta-GGA functional. It is found that the XA crystal lattice is energetically more favorable for V2FeSi, while Fe2VSi forms the L21 structure. In both cases, the electronic structure of the energetically stable modifications corresponds to half-metallic ferrimagnets. Magnetic properties of energetically favorable structures obey the Slater–Pauling rule. All considered properties of the studied structures are explained within the crystal orbital Hamilton population analysis.