The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) has become a model for understanding enzyme catalysis, and yet several details of its mechanism are still unresolved. Specifically, the mechanism of the chemical step, the hydride transfer reaction, is not fully resolved. We found, unexpectedly, the presence of two reactive ternary complexes [enzyme:NADPH:7,8-dihydrofolate (E:NADPH:DHF)] separated by one ionization event. Furthermore, multiple kinetic isotope effect (KIE) studies revealed a stepwise mechanism in which protonation of the DHF precedes the hydride transfer from the nicotinamide cofactor (NADPH) for both reactive ternary complexes of the WT enzyme. This mechanism was supported by the pH-and temperature-independent intrinsic KIEs for the C-H→C hydride transfer between NADPH and the preprotonated DHF. Moreover, we showed that active site residues D27 and Y100 play a synergistic role in facilitating both the proton transfer and subsequent hydride transfer steps. Although D27 appears to have a greater effect on the overall rate of conversion of DHF to tetrahydrofolate, Y100 plays an important electrostatic role in modulating the pK a of the N5 of DHF to enable the preprotonation of DHF by an active site water molecule.kinetic isotope effect | mechanism | dihydrofolate reductase | synergism E scherichia coli dihydrofolate reductase (ecDHFR) catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) through the transfer of a proR hydride from the C4 atom of NADPH to the C6 position of the dihydropterin ring of DHF (1). This enzyme is critical in maintaining the intercellular pool of DHF, which is subsequently used in the biosynthesis of purine nucleotides and some amino acids. Given its biological importance, DHFR is an important drug target (2, 3), and its function has been extensively studied (4-12). However, several fundamental mechanistic details remained incomplete. One unresolved issue is the chronological order of the DHF protonation and hydride transfer steps. Quantum mechanical/molecular mechanical (QM/MM) calculations favor a stepwise protonation-hydride transfer reaction mechanism (10, 13, 14), whereas recent experimental data were interpreted as a change in the reaction mechanism between a concerted process and a stepwise process as a function of pH (15).The nature of DHF N5 protonation is also not fully understood. D27 has been implicated in the protonation of the N5 position of NADPH (4,12,14,(16)(17)(18)) through a linked water molecule. However, it is not clear how the water molecule-promoted DHF protonation at the N5 of the pterin can change in response to protein conformation (19) and to different electrostatic environments. Recently, the Y100 residue, which is located only ca. 3.5 Å from both the amide of the nicotinamide and N8 of the pterin ring (Fig. 1), has been shown to play an important role in electrostatically facilitating the ecDHFR-catalyzed reaction (20, 21). The location of Y100 suggests that it may form hydrogen bonds with ...