We combine two first-principles computer simulation techniques, path integral Monte-Carlo and density functional theory molecular dynamics, to determine the equation of state of magnesium oxide in the regime of warm dense matter, with densities ranging from 0.35 to 71 g cm −3 and temperatures from 10,000 K to 5 × 10 8 K. These conditions are relevant for the interiors of giant planets and stars as well as for shock wave compression measurements and inertial confinement fusion experiments. We study the electronic structure of MgO and the ionization mechanisms as a function of density and temperature. We show that the L-shell orbitals of magnesium and oxygen hybridize at high density. This results into a gradual ionization of the L-shell with increasing density and temperature. In this regard, MgO behaves differently from pure oxygen, which is reflected in the shape of the MgO principal shock Hugoniot curve. The curve of oxygen shows two compression maxima, while that of MgO shows only one. We predict a maximum compression ratio of 4.66 to occur for a temperature of 6.73 ×10 7 K. Finally we study how multiple shocks and ramp waves can be used to cover a large range of densities and temperatures. arXiv:2001.05300v1 [cond-mat.mtrl-sci]