We consider the regularized 3D Navier-Stokes-Cahn-Hilliard equations describing isothermal flows of viscous compressible two-component fluids with interphase effects. We construct for them a new energy dissipative finite-difference discretization in space, i.e., with the non-increasing total energy in time. This property is preserved in the absence of a regularization. In addition, the discretization is well-balanced for equilibrium flows and the potential body force. The sought total density, mixture velocity and concentration of one of the components are defined at nodes of one and the same grid. The results of computer simulation of several 2D test problems are presented. They demonstrate advantages of the constructed discretization including the absence of the so-called parasitic currents.