In this work, we study an analogue of the Weil-Petersson metric on the space of Blaschke products of degree 2 proposed by McMullen. Via the Bers embedding, one may view the Weil-Petersson metric as a metric on the main cardioid of the Mandelbrot set. We prove that the metric completion attaches the geometrically finite parameters from the Euclidean boundary of the main cardioid and conjecture that this is the entire completion.For the upper bound, we estimate the intersection of a circle S r = {z : |z| = r}, r ≈ 1, with an invariant subset G ⊂ D called a half-flower garden, defined in this work. For the lower bound, we use gradients of multipliers of repelling periodic orbits on the unit circle. Finally, utilizing the convergence of Blaschke products to vector fields, we compute the rate at which the Weil-Petersson metric decays along radial degenerations.