Calorimetry and signal processing: Vibrational spectroscopies, heat-flow microcalorimetry, and multivariate analysis are combined to decouple the reaction enthalpies of parallel reactions [picture: see text]. This methodology allows the evaluation of reaction enthalpy from complex systems without recourse to conventional kinetic modeling. Simultaneous in situ/online spectroscopy and heat-flow measurements as well as multivariate analyses are performed, apparently for the first time, to determine heats of reaction for single and parallel reactions. Two different vibrational spectroscopy techniques, namely Raman and FTIR spectroscopy, are used in conjunction with flow-through TAM III microcalorimetry. With respect to the spectroscopic analysis, the reaction spectra are first analyzed to determine the pure-component spectra and the corresponding concentrations without recourse to external calibration. With respect to the calorimetric analysis, a soft modeling approach is employed to determine the heats of reaction without recourse to any conventional kinetic models. This combined approach is implemented to determine the extents of reaction as well as the corresponding heats of reaction at 298.15 K and 0.1 MPa for a) the hydrolysis of acetic anhydride (single reaction) and b) the hydrolysis of methyl paraben and ethyl paraben in alkaline solution (both single and parallel reactions). In the latter case, the heat-flow contributions from the two simultaneous reactions are successfully decoupled. Taken together, these results demonstrate proof of concept for the present approach. The newly developed methodology appears to be quite general and particularly useful for investigating complex reaction systems. This is particularly true for multiple simultaneous reactions and reactions where the detailed kinetic expressions are not available, or cannot be easily determined. The use of extents of reaction is also very helpful where there is high variability in reaction rates, that is, due to the presence of impurities, changes in catalyst activity, or concentrations, temperature, and pH.