We investigate the thermodynamic properties of 3+1 dimensional black holes in asymptotically de Sitter spacetimes, conformally coupled to a real scalar field. We use a Euclidean action approach, where boundary value data is specified at a finite radius 'cavity' outside the black hole, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. For the MTZ subclass of solutions, we find Hawking-Page-like phase transitions from a black hole spacetime to thermal de Sitter with a scalar field. In the more general case, Hawking-Page-like phase transitions are also present, whose existence depends further on a particular cosmic censorship bound.