“…This motivates the development of computationally feasible approaches in this realm. A recently emerging third alternative in literature to this end is employing data-driven surrogate models devising machine learning, see, e.g., [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33] and the references therein. Deploying the training costs offline materializing simulation or experimental data, these models surpass conventional rule-based approaches by drastically reducing the computational cost required during the prediction phase [34,35,36].…”