YCo5 permanent magnet exhibits high uniaxial magnetocrystalline anisotropy energy and has a high Curie temperature. These are good properties for a permanent magnet, but YCo5 has a low energy product, which is notably insufficient for a permanent magnet. In order to improve the energy product in YCo5, we suggest replacing cobalt with iron, which has a much bigger magnetic moment. With a combination of density-functional-theory calculations and thermodynamic CALculation of PHAse Diagrams (CALPHAD) modeling, we show that a new magnet, YFe3(Ni1-xCox)2, is thermodynamically stable and exhibits an improved energy product without significant detrimental effects on the magnetocrystalline anisotropy energy or the Curie temperature.