The article presents the results of studies of thermodynamically stable barium aluminates. A database of thermodynamic data has been created: enthalpies, entropies and coefficients of the heat capacity equation, necessary for the study of multicomponent systems, including barium aluminates. Since the basis of modern materials science is multicomponent systems, on their basis it is possible to create various combinations of phases in structural materials with a set of specified properties. Thus, modern thermodynamics is not a frozen science. It is known that the objects of research are expanding, where thermodynamic methods can be applied to study the area of high and low temperatures, the area of very low and high pressures. And new discoveries give birth to new areas of application of thermodynamics: thermodynamics of thermonuclear reactions, plasma thermodynamics, relativistic thermodynamics, thermodynamics of negative absolute temperatures, etc. And, finally, the methods of thermodynamic research themselves do not remain unchanged: the exergy method, the methods of thermodynamics of irreversible processes, etc. At present, the thermodynamic method of research is widely used in various fields of physics, chemistry, biology, and many other sciences and branches of technology. Being one of the most extensive areas of modern natural science, thermodynamics plays an important role in the system of knowledge necessary for an engineer of any specialty in his practical activities. Chemical thermodynamics, on the other hand, paid the greatest attention to the study of phase transitions and the properties of solutions, and in relation to chemical reactions it was limited mainly to determining their thermal effects. To some extent, this is due to the fact that it was these areas of chemical thermodynamics that were the first to satisfy the needs of production. The practical use of known methods of thermodynamics of chemical reactions for solving major industrial problems for a long time lagged behind its capabilities.