Kieselguhr was immobilized with diphenylthiocarbazone (dithizone) and utilized as a new sorbent to extract palladium ions from an aqueous solution. The physicochemical features of the immobilized kieselguhr (K–Dz) were specified by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis–differential thermal analysis. The average crystal size of the prepared material was found to be 24.41 nm. The sorption potential of the immobilized kieselguhr for the extraction of Pd(II) and La(III) in a batch mode was studied. The effects of pH, shaking time as well as the initial concentration of metals have been examined. The results demonstrate that the optimum pH was found to be 4.5 and the equilibrium was attained within 15.0 min. The adsorption kinetics and equilibrium data were well described by the pseudo-second-order kinetic model and Sips isothermal model with a maximum sorption capacity of 20.3 (mg/g). Thermodynamic parameters of the studied metal ions show that the process is spontaneous and endothermic in nature. The desorption process of Pd(II) was highly managed using acidified thiourea giving a desorption percent of approximately 80.0%. The separation possibility of Pd(II) from some metal ions such as La(III) was achieved successfully. The developed (K–Dz) composite method was applied for the recovery and separation of Pd(II) and other metal ions from a simulated automotive catalyst leachate solution. The results indicated that the (K–Dz) composite has a good reusability potential.