The effect of PTFE, continuous boron, and tungsten fibers on the combustion behavior and strength of reactive Ni–Al compacts was examined in this study. The introduction of continuous fibers into Ni–Al compacts according to the developed scheme was found to increase the flexural strength from 12 to 120 MPa. Heat treatment (HT), leading to chemical interaction of the starting components, increases the strength of compacts at temperatures not exceeding 550 °C. The combination of reinforcement and HT significantly increases the strength without reducing reactivity. Experimental results showed that strength and combustion rate increase with the reduction in PTFE to 1 wt % in Ni–Al compacts. A favorable effect of the addition of PTFE from 5 to 10 wt % on the reduction of the threshold for the shock-wave initiation of reactions in Ni–Al was established. The obtained results can be used to produce reactive materials with high mechanical and energy characteristics.