In this paper, we evaluated the particle dispersion degree of alumina slurry containing a dispersant by solvent nuclear magnetic resonance (NMR) relaxation and compared it with conventional dispersion evaluation methods such as viscosity, particle size, and sedimentation height measurements. The dispersion of slurry was evaluated via numerical analysis of the transverse relaxation time (T2). The effect of the changes in different parameters of the experiment in terms of milling time, solid loading, and dispersant amount was investigated by NMR relaxation as well as conventional methods. The results of NMR relaxation measurements revealed that T2 correlates well with other dispersion evaluation methods; thus, it is an efficient technique to evaluate the dispersion of alumina slurry, specifically, when studying the effect of the change in milling time and dispersion amount.