CpG oligodeoxynucleotides (ODN) show promise as immunoprotective agents and vaccine adjuvants. CpG ODN type D were shown to improve clinical outcome in rhesus macaques challenged with Leishmania major. These ODN have a self-complementary core sequence and a 3′ end poly(G) track that favors G-tetrad formation leading to multimerization. Although multimerization appears necessary for localization to early endosomes and signaling via Toll-like receptor 9 (TLR-9), it can result in product polymorphisms, aggregation and precipitation, thereby hampering their clinical applications. This study shows that functionalizing the poly(G) track of D ODN with thermolytic 2-(N-formyl-N-methyl)aminoethyl (fma) phosphate/thiophosphate protecting groups (pro-D ODN) reduces G-tetrad formation in solution, while allowing tetrad formation inside the cell where the potassium concentration is higher. Temperature-dependent cleavage of the fma groups over time further promoted formation of stable G-tetrads. Peripheral blood cells internalized pro-D ODN efficiently, inducing high levels of IFNα, IL-6, IFNγ and IP-10 and triggering dendritic cell maturation. Administration of pro-D35 to macaques challenged with L.major significantly increased the number of antigen-specific IFNγ-secreting PBMC and reduced the severity of the skin lesions demonstrating immunoprotective activity of pro-D ODN in vivo. This technology fosters the development of more efficient immunotherapeutic oligonucleotide formulations for the treatment of allergies, cancer and infectious diseases.