In the geological record, the intrusion of substantial amounts of magma into circumferential faults and ring fractures is commonly observed. Finite element modelling is used here to investigate the strain field that may be expected from such intrusive events. Two simple vertical scenarios are explored, one for a caldera with a central block of thickness to diameter ratio of~1:1 (similar to Rabaul) and one with a ratio much less than 1:1 (similar to the 'Valles type'). Surface deformation in both cases is similar with central uplift, the development of a moat (or trough) like feature just outside of the intersection of the azimuth of the intruded ring fault and the free surface, and broader scale tumescence at a scale several times larger than the caldera's radius. The response of the block and sub-caldera magma chamber for the two scenarios, however, is different. The blocks are in effect squeezed; the high aspect ratio one deforms upwards at the surface and downwards at its base, whereas the low aspect ration one experiences up arching (or bending) of the central part of the caldera block. Central uplift still occurs when only a short arc of a ring fracture system or a circumferential fault is intruded. In both models, tumescence in the centre of the caldera from single ring dyke intrusion can only account for decimetres to metres of surface uplift. Repeated intrusions over tens to hundreds of thousands of years, however, may cause incremental up doming of the caldera block leading to larger scale resurgent features. The amount of uplift possible due to squeezing of a high aspect ratio block is limited. It is proposed, however, that where bending of plate-like blocks occur above a decompressible and/or malleable magma body, ring fault intrusion may be a significant contributor to resurgence. In the simple conceptual models shown here, the amount of ring dykeinduced central uplift will be >40-50% of the width of the ring complex. In the geological record the accumulation of intrusions into some ring fractures has led to annular or arcuate plutons of hundreds of meters to several kilometres in thickness. At certain calderas such intrusions may be a control on the marked concentration of uplift within the restricted area defined by the caldera faults. The complex nature of the horizontal displacements associated with the intrusion of ring and arcuate dykes is also explored. Intrusion into ring fracture zones will tend to take place into those sectors of the annular zone which are perpendicular to the least compressive stress vector. This may be a factor in the observed difference for caldera evolution in extensional and compressional areas. The unrest at several modern calderas is tentatively related to circumferential fault intrusion.