Background
With increasing accumulation of vegetable waste in China, the valorization of vegetable waste becomes an urgent concern. Based on the characteristics of high moisture content and biodegradable organic matter of vegetable waste, anaerobic digestion as an effective technique was selected to reuse this kind of agriculture waste. The anaerobic digestion performance is highly correlated with the functional microbial community. In this study, mesophilic and thermophilic digestions of vegetable waste were conducted, and dynamics of the microbial community were investigated.
Results
The mesophilic and thermophilic collapsed stages occurred at organic loading rates of 1.5 and 2.0 g volatile solid (VS)/(L·d), respectively, due to severe accumulation of volatile fatty acids. The mesophilic digestion exhibited a higher microbial diversity and richness than the thermophilic digestion. Syntrophic acetate-oxidizing coupled with hydrogenotrophic methanogenesis was the dominant pathway in the thermophilic stable system, and acetoclastic methanogenesis in the mesophilic stable system. The dominant acidogens, syntrophus, and methanogens were Candidatus_Cloacamonas, norank_f__Synergistaceae, Methanosaeta, and Methanosarcina in the mesophilic stable stage, and Anaerobaculum, Syntrophaceticus, Methanosarcina, and Methanothermobacter in thermophilic stable stage. Spirochaetae and Thermotogae phyla were the characteristic microorganisms in the mesophilic and thermophilic collapsed stages, respectively.
Conclusions
This study unveiled the distribution of the functional microbial consortia at the stable and collapsed periods of the anaerobic digestion of vegetable waste under mesophilic and thermophilic conditions to providing guidelines for the further research of anaerobic digestion of vegetable waste.