Capacitated human and rabbit spermatozoa can sense temperature differences as small as those within the oviduct of rabbits and pigs at ovulation, and they respond to them by thermotaxis (i.e., by swimming from the cooler to the warmer temperature). The molecular mechanism of sperm thermotaxis is obscure. To reveal molecular events involved in sperm thermotaxis, we took a pharmacological approach in which we examined the effect of different inhibitors and blockers on the thermotactic response of human spermatozoa. We found that reducing the intracellular, but not extracellular, Ca(2+) concentration caused remarkable inhibition of the thermotactic response. The thermotactic response was also inhibited by each of the following: La(3+), a general blocker of Ca(2+) channels; U73122, an inhibitor of phospholipase C (PLC); and 2-aminoethoxy diphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate receptors (IP(3)R) and store-operated channels. Inhibitors and blockers of other channels had no effect. Likewise, saturating concentrations of the chemoattractants for the known chemotaxis receptors had no effect on the thermotactic response. The results suggest that the IP(3)R Ca(2+) channel, located on internal Ca(2+) stores, operates in sperm thermotaxis, and that the response is mediated by PLC and requires intracellular Ca(2+). They also suggest that the thermosensors for thermotaxis are not the currently known chemotaxis receptors.