The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery. Liquid crystals are used as excellent carriers due to their distinctive characteristics, such as stimuli-responsive drug delivery and sustained release patterns. Comprehending the materials that form mesophase provides insight into their distinct physiochemical characteristics and their use in drug delivery. This review highlights the important role lyotropic and thermotropic liquid crystals play in drug delivery, underscoring their considerable potential. The transition of thermotropic liquid crystals from their conventional technological applications to drug delivery has been studied. Nonetheless, a few challenges still need to be addressed, including formulation strategy refinement, regulating release rates, maximising the loading of hydrophilic drugs, and storage stability. In the pharmaceutical field, addressing these issues will open the door to a revolutionary paradigm that will revolutionise therapeutic outcomes and improve patient care.
Graphical Abstract