This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Page 1 of 42A c c e p t e d M a n u s c r i p t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
AbstractLiquid electrolytes have been prepared using lithium tetrafluoroborate (LiBF 4 ) and propylene carbonate (PC). Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were taken for the cation, anion and solvent molecules using lithium ( 7 Li), fluorine ( 19 F) and hydrogen ( 1 H) nuclei, respectively. It was found that lithium diffusion was slow compared to the much larger fluorinated BF 4 anion likely resulting from a large solvation shell of the lithium. Ionic conductivity and viscosity have also been measured for a range of salt concentrations and temperatures. By comparing the measured conductivity with a ideal predicted conductivity derived from the Nernst-Einstein equation and self diffusion coefficients the degree of ionic association of the anion and cation was determined and was observed to increase with salt concentration and temperature. Using the measured viscosity and self diffusion coefficients the effective radius of each of the species was determined for various salt concentrations.