Controlling the location of acid sites in zeolites can have a great impact on catalysis. In this work we face the objective of directing the location of Al into the 10R channels of ZSM-5 by taking advantage of the structural preference of B to occupy certain positions at the channels intersections, as suggested by theoretical calculations. The synthesis of B-Al-ZSM-5 zeolites with variable Si/Al and Si/B ratio, followed by B removal in a post synthesis treatment, produces ZSM-5 samples enriched in Al occupying positions at 10R channels. The location of the acid sites is determined on the basis of the product distribution of 1-hexene cracking as test reaction. The higher selectivity to propene and lower C4 = /C3 = ratio in the samples synthesized with B and subsequently deboronated can be related to a larger concentration of acid sites in 10R channels, where monomolecular cracking occurs. Finally, several ZSM-5 samples have been tested in the methanol to propene reaction, and those synthesized through the B assisted method show longer catalytic lifetime, higher propene yield and lower yield of alkanes and aromatics.