2024
DOI: 10.4213/im9393e
|View full text |Cite
|
Sign up to set email alerts
|

$\theta$-metric function in the problem of minimization of functionals

Igor' Germanovich Tsar'kov

Abstract: We study approximative properties of sets as a function of the rate of variation of the distance function defined in terms of some continuous functional (in lieu of a metric). As an application, we prove non-uniqueness of approximation by non-convex subsets of Hilbert spaces with respect to special continuous functionals. Results of this kind are capable of proving non-uniqueness solvability for gradient-type equations.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 20 publications
0
0
0
Order By: Relevance