A new type of hybrid polymeric-based film containing 1-(1,3-diethoxy-1,3-dioxopropan-2-ylo)-3-methylimidazolium bromide (RIL1_Br) and 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium bromide (RIL2_Br) reactive ionic liquids was elaborated. Poly(vinyl alcohol) (PVA)-based films with 9–33 wt % of RILs were subsequently characterized using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and TGA-FTIR. PVA-RIL films were also studied in tensile tests, contact angle and sorption measurements. RIL incorporation enhanced thermal and mechanical stability of PVA membranes due to the hydrogen bonds between RILs and polymer chains. Membrane swelling behavior in water (H2O), ethanol (EtOH), and propan-2-ol (IPA) and the kinetics of water sorption process revealed that PVA-RILs membranes possess the highest affinity towards water. It was pointed out that both the RIL type and the RIL amount in the polymer matrix have significant influence on the membrane swelling behavior and the water sorption kinetics.