2016
DOI: 10.1088/1361-648x/29/4/043003
|View full text |Cite
|
Sign up to set email alerts
|

Thin film growth studies using time-resolved x-ray scattering

Abstract: Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
33
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 31 publications
(34 citation statements)
references
References 97 publications
0
33
1
Order By: Relevance
“…They involve films of water (Gutfreund et al, 2016), alkane (Fontaine et al, 2018), lipid (Nylander et al, 2017), organic semiconductor (Zykov et al, 2017) and inorganic semiconductor (Highland et al, 2017;Singh et al, 2017); microgels (Kyrey et al, 2018) and microemulsions ; templated (Li-Destri et al, 2016) and self-assembled polymer structures (Berezkin et al, 2018;Glavic et al, 2018;Xie et al, 2018); nanocolumns growing from vapor deposition (Haddad et al, 2016); Au nanoparticles during CO oxidation (Odarchenko et al, 2018); C 60 monolayer islands (Kowarik, 2017); magnetic nanoparticles (Ukleev et al, 2016(Ukleev et al, , 2017 and magnetic films (Merkel et al, 2015;Glavic et al, 2018); lithographic gratings (Pflü ger et al, 2019); and sputtered multilayers . They involve films of water (Gutfreund et al, 2016), alkane (Fontaine et al, 2018), lipid (Nylander et al, 2017), organic semiconductor (Zykov et al, 2017) and inorganic semiconductor (Highland et al, 2017;Singh et al, 2017); microgels (Kyrey et al, 2018) and microemulsions ; templated (Li-Destri et al, 2016) and self-assembled polymer structures (Berezkin et al, 2018;Glavic et al, 2018;Xie et al, 2018); nanocolumns growing from vapor deposition (Haddad et al, 2016); Au nanoparticles during CO oxidation (Odarchenko et al, 2018); C 60 monolayer islands (Kowarik, 2017); magnetic nanoparticles (Ukleev et al, 2016(Ukleev et al, , 2017 and magnetic films (Merkel et al, 2015;…”
Section: Published Usagementioning
confidence: 99%
See 1 more Smart Citation
“…They involve films of water (Gutfreund et al, 2016), alkane (Fontaine et al, 2018), lipid (Nylander et al, 2017), organic semiconductor (Zykov et al, 2017) and inorganic semiconductor (Highland et al, 2017;Singh et al, 2017); microgels (Kyrey et al, 2018) and microemulsions ; templated (Li-Destri et al, 2016) and self-assembled polymer structures (Berezkin et al, 2018;Glavic et al, 2018;Xie et al, 2018); nanocolumns growing from vapor deposition (Haddad et al, 2016); Au nanoparticles during CO oxidation (Odarchenko et al, 2018); C 60 monolayer islands (Kowarik, 2017); magnetic nanoparticles (Ukleev et al, 2016(Ukleev et al, , 2017 and magnetic films (Merkel et al, 2015;Glavic et al, 2018); lithographic gratings (Pflü ger et al, 2019); and sputtered multilayers . They involve films of water (Gutfreund et al, 2016), alkane (Fontaine et al, 2018), lipid (Nylander et al, 2017), organic semiconductor (Zykov et al, 2017) and inorganic semiconductor (Highland et al, 2017;Singh et al, 2017); microgels (Kyrey et al, 2018) and microemulsions ; templated (Li-Destri et al, 2016) and self-assembled polymer structures (Berezkin et al, 2018;Glavic et al, 2018;Xie et al, 2018); nanocolumns growing from vapor deposition (Haddad et al, 2016); Au nanoparticles during CO oxidation (Odarchenko et al, 2018); C 60 monolayer islands (Kowarik, 2017); magnetic nanoparticles (Ukleev et al, 2016(Ukleev et al, , 2017 and magnetic films (Merkel et al, 2015;…”
Section: Published Usagementioning
confidence: 99%
“…The studied samples represent the enormous breadth of modern surface science. They involve films of water (Gutfreund et al, 2016), alkane (Fontaine et al, 2018), lipid (Nylander et al, 2017), organic semiconductor (Zykov et al, 2017) and inorganic semiconductor (Highland et al, 2017;Singh et al, 2017); microgels (Kyrey et al, 2018) and microemulsions ; templated (Li-Destri et al, 2016) and self-assembled polymer structures (Berezkin et al, 2018;Glavic et al, 2018;Xie et al, 2018); nanocolumns growing from vapor deposition (Haddad et al, 2016); Au nanoparticles during CO oxidation (Odarchenko et al, 2018); C 60 monolayer islands (Kowarik, 2017); magnetic nanoparticles (Ukleev et al, 2016(Ukleev et al, , 2017 and magnetic films (Merkel et al, 2015;Glavic et al, 2018); lithographic gratings (Pflü ger et al, 2019); and sputtered multilayers .…”
Section: Published Usagementioning
confidence: 99%
“…Molecular TF phases are mostly solved by grazing incidence X-ray diffraction (GIXD), which is challenging because the amount of scattering material is small and indexation procedures are not automated as in the case of (bulk) single crystal Bragg reflections. 9 The most studied example of a substrate induced polymorph is the TF phase of pentacene, which, as a larger member of the acenes, is closely related to tetracene and a benchmark material for organic semiconductor devices. Pentacene exhibits the coexistence of TF and high temperature (HT) bulk phases in ultrathin layers.…”
Section: Introductionmentioning
confidence: 99%
“…5(b) also shows the intensity evolution between the first-and secondorder Bragg peaks at q y = 0.0 nm À1 . These intensity oscillations, also known as the anti-Bragg oscillations, are widely employed in time-resolved studies of molecular thin-film growth (Kowarik et al, 2009;Kowarik, 2017). The oscillatory character of the scattered X-ray intensity at the anti-Bragg position is given by the alternating constructive and destructive interferences of the X-ray waves partially scattered from the multilayer interfaces.…”
Section: Temporal Analysis Layer By Layermentioning
confidence: 99%