Replacement of a phosphodiester linkage with an amide linkage can improve the binding affinity of oligonucleotides to complementary RNA and their stability toward nucleases. In addition, restricting the conformation of the sugar moiety and the phosphate backbone in oligonucleotides effectively improves duplex stability. In this study, we designed amide-linked dinucleotides containing a 3′,4′-tetrahydropyran-bridged nucleic acid (3′,4′-tpBNA) with a constrained sugar conformation as well as a torsion angle ε. Phosphoramidites of the designed dinucleotides were synthesized and incorporated into oligonucleotides. Conformational analysis of the synthesized dinucleotides showed that the sugar conformation of the S-isomer of the amide-linked dinucleotide containing 3′,4′-tpBNA was N-type, which has the same conformation as that of the RNA duplex, while that of another R-isomer was S-type. T m analysis indicated that the oligonucleotides containing the synthesized S-isomer showed RNA-selective hybridizing ability, although their duplex-forming ability was slightly inferior to that of natural oligonucleotides. Interestingly, the stability of the oligonucleotides toward endonucleases was significantly improved by modification with the two types of amide-linked dinucleotides developed in this study.