Unlike bulk materials, the physicochemical properties of nano-sized metal clusters can be strongly dependent on their atomic structure and size. Over the past two decades, major progress has been made in both the synthesis and characterization of a special class of ligated metal nanoclusters, namely, the thiolate-protected gold clusters with size less than 2 nm. Nevertheless, the determination of the precise atomic structure of thiolate-protected gold clusters is still a grand challenge to both experimentalists and theorists. The lack of atomic structures for many thiolate-protected gold clusters has hampered our in-depth understanding of their physicochemical properties and size-dependent structural evolution. Recent breakthroughs in the determination of the atomic structure of two clusters, [Au 25 (SCH 2 CH 2 Ph) 18 ] q (q ¼ À1, 0) and Au 102 (p-MBA) 44 , from X-ray crystallography have uncovered many new characteristics regarding the gold-sulfur bonding as well as the atomic packing structure in gold thiolate nanoclusters. Knowledge obtained from the atomic structures of both thiolate-protected gold clusters allows researchers to examine a more general ''inherent structure rule'' underlying this special class of ligated gold nanoclusters. That is, a highly stable thiolate-protected gold cluster can be viewed as a combination of a highly symmetric Au core and several protecting gold-thiolate ''staple motifs'', as illustrated by a general structural formula [Au]