This work investigates the possibility of using thiolated silicone oils as new components in protective creams and their impact on the efficacy of these products. Thiolated silicone oils were synthesized by amide bond formation between primary amino groups of poly17dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane] and carboxylic groups of thiol ligand (3-mercaptopropionic acid) with carbodiimide as a coupling agent. To evaluate and compare the properties of these kinds of thiomers, three different emulsion o/w types were obtained. Emulsion E1 contained methyl silicone oil, E2 poly[dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane], and E3 thiolated silicone oil (silicone-MPA), respectively. Physicochemical properties, including pH, conductivity, droplet size distribution, viscosity, and stability, were assessed. The efficacy of barrier creams in the prevention of occupational skin diseases depends on their mechanical and rheological properties. Thus, the method which imitates the spreadability conditions on the skin and how structure reconstruction takes places was performed. We also investigated textural profile, bioadhesion, protection against water and detergents, and water vapor permeability. Emulsion E3 was characterized by beneficial occlusion, spreadability, and adhesion properties. These features with prolonged residence time on the skin can make designed barrier creams more preferable for consumers.