The shear piezoelectric behavior in relaxor-PbTiO3 (PT) single crystals is investigated in regard to crystal phase. High levels of shear piezoelectric activity, d15 or d24 >2000 pC N−1, has been observed for single domain rhombohedral (R), orthorhombic (O) and tetragonal (T) relaxor-PT crystals. The high piezoelectric response is attributed to a flattening of the Gibbs free energy at compositions proximate to the morphotropic phase boundaries, where the polarization rotation is easy with applying perpendicular electric field. The shear piezoelectric behavior of pervoskite ferroelectric crystals was discussed with respect to ferroelectric-ferroelectric phase transitions and dc bias field using phenomenological approach. The relationship between single domain shear piezoelectric response and piezoelectric activities in domain engineered configurations were given in this paper. From an application viewpoint, the temperature and ac field drive stability for shear piezoelectric responses are investigated. A temperature independent shear piezoelectric response (d24, in the range of −50°C to O-T phase transition temperature) is thermodynamically expected and experimentally confirmed in orthorhombic relaxor-PT crystals; relatively high ac field drive stability (5 kV cm−1) is obtained in manganese modified relaxor-PT crystals. For all thickness shear vibration modes, the mechanical quality factor Qs are less than 50, corresponding to the facilitated polarization rotation.