A theoretical investigation of the modulation instability (MI) in the three core triangular oppositely directed coupler with negative index material channel is presented. This class of couplers have an effective feedback mechanism due to the opposite directionality of the phase velocities in the negative and positive index channels. It is found that the MI in the nonlinear three core triangular oppositely directed coupler is significantly influenced by the ratio of the forward- to backward-propagating wave power and nonlinearity. Also, in the case of the normal dispersion regime a threshold-like behavior is observed, whereas this behavior is not identified in the anomalous dispersion regime. For the asymmetric case (
), two pairs of instability bands are observed for both the nonlinear NIM and PIM channels, while a single pair of instability bands is noted for the symmetric case (h = 1). In the normal dispersion regime, the defocusing nonlinearity is found to suppress the MI by reducing both the gain and width of the instability band, whereas the MI is enhanced in the anomalous dispersion regime due to the defocusing nonlinearity. Thus we report new ways to generate and manipulate the MI and solitons in three-core triangular oppositely directed couplers with a particular emphasis on a negative-index material (NIM) channel.