We study the geometry of the second-order expansion of the extended end-point map for the sub-Riemannian geodesic problem. Translating the geometric reality into equations we derive new second-order necessary optimality conditions in sub-Riemannian Geometry. In particular, we find an ODE for velocity of an abnormal sub-Riemannian geodesics. It allows to divide abnormal minimizers into two classes, which we propose to call 2-normal and 2-abnormal extremals. In the 2-normal case the above ODE completely determines the velocity of a curve, while in the 2-abnormal case the velocity is undetermined at some, or at all points. With some enhancement of the presented results it should be possible to prove the regularity of all 2-normal extremals (the 2-abnormal case seems to require study of higher-order conditions) thus making a step towards solving the problem of smoothness of sub-Riemannian abnormal geodesics.As a by-product we present a new derivation of Goh conditions.
Martynie i Zuzi* Part of this research was conducted during the employment of MJ at the University of Fribourg, finaced by the ERC Starting Grant Geometry of Metric Groups, grant agreement 713998 GeoMeG.