We have developed a technology for efficiently enhancing the anticancer apoptosis-inducing activity of agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily by the formation of immunoliposomes. To induce apoptosis in cancer cells, agonistic antibodies to the TNFR superfamily normally need cross-linking by internal immune effector cells via the Fc region after binding to receptors on the cell membrane. To develop apoptosis-inducing antibodies that do not require the support of cross-linking by immune cells, we prepared immunoliposomes conjugated with TRA-8, an agonistic antibody against death receptor 5 (DR5), with various densities of antibody on the liposome surface, and evaluated their activities. The TRA-8 immunoliposomes exhibited apoptosis-inducing activity against various DR5-positive human carcinoma cells at a significantly lower concentration without cross-linking than that of the original TRA-8 and its natural ligand (TRAIL). The activity of the immunoliposomes was correlated with the density of antibodies on the surface. As the antibody component, not only the full-length antibody but also the Fab' fragment could be used, and the TRA-8 Fab' immunoliposomes also showed exceedingly high activity compared with the parental antibody, namely, TRA-8. Moreover, cytotoxicity of the TRA-8 full-length or Fab' immunoliposome against normal cells, such as human primary hepatocytes, was lower than that for TRAIL. Enhanced activity was also observed for immunoliposomes conjugated with other apoptosis-inducing antibodies against other receptors of the TNFR superfamily, such as death receptor 4 (DR4) and Fas. Thus, immunoliposomes are promising as a new modality that could exhibit significant activity at a low dose, for cost-effective application of an antibody fragment and with stable efficacy independent of the intratumoral environment of patients as a TNF superfamily agonistic therapy.