MicroRNAs have been proposed to be a class of biomarkers of disease as expression levels are significantly altered in various tissues and body fluids when compared to healthy controls. As such, the detection and quantification of microRNAs is imperative. While many methods have been established for quantification of microRNAs, they typically rely on time consuming handling such as RNA extraction, purification, or ligation. Here we describe a novel method for quantification of microRNAs using direct amplification in body fluids without upstream sample preparation. Tested with a point-of-care device (termed Gene-Z), the presence of microRNA promotes base-stacking hybridization, and subsequent amplification between two universal strands. The base-stacking approach, which was achieved in <60 min, provided a sensitivity of 1.4 fmol per reaction. Tested in various percentages of whole blood, plasma, and faeces, precision (coefficient of variation = 2.6%) was maintained and comparable to amplification in pristine samples. Overall, the developed method represents a significant step towards rapid, one-step detection of microRNAs.