2014
DOI: 10.1002/smll.201303419
|View full text |Cite
|
Sign up to set email alerts
|

Thread‐like Supercapacitors Based on One‐Step Spun Nanocomposite Yarns

Abstract: Thread-like electronic devices have attracted great interest because of their potential applications in wearable electronics. To produce high-performance, thread-like supercapacitors, a mixture of stable dispersions of single-walled carbon nanotubes and conducting polyaniline nanowires are prepared. Then, the mixture is spun into flexible yarns with a polyvinyl alcohol outer sheath by a one-step spinning process. The composite yarns show excellent mechanical properties and high electrical conductivities after … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

3
96
2
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 149 publications
(102 citation statements)
references
References 28 publications
3
96
2
1
Order By: Relevance
“…Various carbonaceous materials like activated carbon,9, 10 carbon nanotubes (CNTs),11, 12, 13 reduced graphene oxide (rGO),14, 15, 16 and our recently developed rGO/CNT hybrids17, 18 were exploited as active materials for fiber m‐SCs, yet their applications are restricted by the low capacitance of <200 mF cm −2 . Alternatively, incorporating pseudocapacitive materials into fiber m‐SCs is a superior solution to achieve high‐density energy due to 10–100 times higher theoretical capacitance than carbon materials 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. Due to the poor conductivity for pseudocapacitive materials, composite electrode design by depositing active materials on one‐dimensional (1D) conductive scaffolds including carbon‐based fibers19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or metal‐based wires,31, 32, 33, 34, 35, 36 was employed to improve the electron transport.…”
mentioning
confidence: 99%
See 4 more Smart Citations
“…Various carbonaceous materials like activated carbon,9, 10 carbon nanotubes (CNTs),11, 12, 13 reduced graphene oxide (rGO),14, 15, 16 and our recently developed rGO/CNT hybrids17, 18 were exploited as active materials for fiber m‐SCs, yet their applications are restricted by the low capacitance of <200 mF cm −2 . Alternatively, incorporating pseudocapacitive materials into fiber m‐SCs is a superior solution to achieve high‐density energy due to 10–100 times higher theoretical capacitance than carbon materials 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. Due to the poor conductivity for pseudocapacitive materials, composite electrode design by depositing active materials on one‐dimensional (1D) conductive scaffolds including carbon‐based fibers19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or metal‐based wires,31, 32, 33, 34, 35, 36 was employed to improve the electron transport.…”
mentioning
confidence: 99%
“…Alternatively, incorporating pseudocapacitive materials into fiber m‐SCs is a superior solution to achieve high‐density energy due to 10–100 times higher theoretical capacitance than carbon materials 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. Due to the poor conductivity for pseudocapacitive materials, composite electrode design by depositing active materials on one‐dimensional (1D) conductive scaffolds including carbon‐based fibers19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or metal‐based wires,31, 32, 33, 34, 35, 36 was employed to improve the electron transport. Despite some progresses, the improvements in the areal energy density for these fiber m‐SCs are still too modest to cater for many practical requirements and often come at the expense of sacrificing their rate capability or power density 1, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36.…”
mentioning
confidence: 99%
See 3 more Smart Citations